## bigoh1

Language/Type: C++ algorithm analysis big-oh
Author: Marty Stepp (on 2016/06/16)

Give a tight bound of the nearest runtime complexity class for each of the following code fragments in Big-Oh notation, in terms of the variable N. In other words, write the code's growth rate as N grows. Write a simple expression that gives only a power of N using a caret `^` character for exponentiation, such as `O(N^2)` to represent O(N2) or `O(log N)` to represent O(log2 N). Do not write an exact calculation of the runtime such as O(2N3 + 4N + 14).

 ```// a) int sum = 0; for (int i = 1; i <= N + 2; i++) { sum++; } for (int j = 1; j <= N * 2; j++) { sum += 5; } cout << sum << endl;``` answer: ```// b) int sum = 0; for (int i = 1; i <= N - 5; i++) { for (int j = 1; j <= N - 5; j += 2) { sum++; } } cout << sum << endl;``` answer: ```// c) int sum = N; for (int i = 0; i < 1000000; i++) { for (int j = 1; j <= i; j++) { sum += N; } for (int j = 1; j <= i; j++) { sum += N; } for (int j = 1; j <= i; j++) { sum += N; } } cout << sum << endl;``` answer: ```// d) Vector list; for (int i = 1; i <= N * N; i++) { for (int j = 1; j <= N; j++) { list.add(i + j); } } for (int i = 1; i <= 2 * N; i++) { list.remove(list.size() - 1); } cout << "done!" << endl;``` answer: ```// e) HashSet set1; for (int i = 1; i <= N; i++) { set1.add(i); } Set set2; for (int i = 1; i <= N; i++) { set1.remove(i); set2.add(i + N); } cout << "done!" << endl;``` answer: